
Using Dirichlet Mixture Priors
to Derive Hidden Markov Models for Protein Families$

Michael Brown
Comput.er Science

University of California
Santa Cruz, CA 95064
mpbrown~cse.ucsc.edu

Richard Hughey
Computer Engineering
University of California
Santa Cruz, CA 95064

rph~cse.ucsc.edu

Anders Krogh
Electronics Institute, Build. 349
Technical University of Denmark

2800 Lyngby, Denmark
krogh~nordig.ei.dth.dk

I. Saira Mian
Sinsheimer Laboratories
University of California
Santa Cruz, CA 95064
saira@fangio.ucsc.edu

Kimmen SjSlander
Computer Science

University of C, alifornia
Santa Cruz, CA 95064
kimmenC@cse.ucsc.edu

David Haussler
¯ Computer Science

University of California
Santa Cruz, CA 95064
haussler@cse.ucsc.edu

Abstract

A Bayesian method for estimating the amino acid
distributions in the states of a hidden Markov
model (HMM) for a protein family or the colunms
of a multiple alignment of that family is intro-
duced. This method uses Dirichlet mixture densi-
ties as priors over amino acid distributions. These
mixture densities are determined from examina-
tion of previously constructed tlMMs or multiple
alignments. It is shown that this Bayesian method
can improve the quality of ItMMs produced from
small training sets. Specific experiments on the
EF-hand motif are reported, for which these pri-
ors are shown to produce HMMs with higher like-
lihood on unseen data, and fewer fal~ positives
and false negatives in a database search task.

Introduction
Hidden Markov models (HMMs) are a class of sta-
tistical models, related to profiles (Waterman and
Perlwitz, 1986; Barton and Sternberg, 1990; Grib-
skov et al., 1990; Bowie et al., 1991; Li]thy et al.,
1991), that can be successfully applied to the prob-
lems of modeling protein and nucleic acid families
(Churchill, 1989; White el al., 1991; Stultz el al., 1993;
Krogh et al., 1992; Hughey, 1993; Baldi el al., 1992;
Baldi and Chauvin, 1993; Asai, K. and Hayamizu, S.
and Onizuka, K., 1993). HMMs can be extremely ef-
fective for database searching and, without the aid of
three-dimensional structural information, can in some

tThis work was supported in part by NSF grants CDA-
9115268 and IR1-9123692, ONR grant N00O14-91-J-1162,
NIH grant GM17129, a grant from the Danish Natural Sci-
ence Research Council, and funds granted by the UCSC
Division of Natural Sciences.

cases generate alignments equal in quality to those pro-
duced by methods incorporating such high-level infor-
mation.

One disadvantage of HMM methods is that they re-
quire many training sequences from the protein family
or domain of interest. When training sets are small,
calculating the optimal model for a given protein fam-
ily is difficult because there are insufficient data to
properly estimate the parameters. As only a small
number of sequences is available for most protein fam-
ilies and domains, to date the method has only been
applied to large, well studied families such as the EF-
hand family of proteins that posses a Ca metal ion
binding motif. Experimenting with the globin family,
we found that 200 randomly chosen family members
were required to obtain quality models. The majority
of protein families represented in the databases contain
far fewer members.

One natural solution is to introduce additional prior
information into the construction of the HMM. In
this paper, we present methods for incorporating prior
knowledge of typical amino acid distributions over po-
sitions in nmltiple alignments to the problem of HMM
training. In fact, our HMMs themselves include a lin-
ear chain of match states that capture amino acid dis-
tributions for each position in the multiple alignment
of a protein family. Thus, in a bootstrapping pro-
cedure, we can use distributions from our previously
built HMMs to generate prior information for the next
model. Additionally, databases can be searched with
the model built from a small training data set to find
new members of the family, increasing the size of the
training set.

In this paper, we introduce Dirichlet mixture densi-
ties (Antoniak, 1974) as a means of representing prior
information about typical amino acid distributions. A
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related use of mixture priors, in this case Gaussian mix-
ture priors used in the context of neural net training,
was given in (Nowlan and Hinton, 1992). The Dirich-
let mixtures cluster amino acid distributions into pro-
totypicai classes of distributions. Using Bayes’ rule,
Dirichlet mixture densities can be combined with ob-
served frequencies of amino acids to obtain posterior
estimates of amino acid distributions. Ill a detailed set
of experiments on building HMM models of the EF-
hand motif, we show that such posterior estimates lead
to superior HMMs. In particular, we show that HMMs
for the EF-hand motif trained using appropriate pri-
ors produce models that have higher likelihood with
respect to independent (non-training) sets of EF-hand
motifs. Furthermore, we show that these models pro-
duce fewer false positive and false negative sequences
when searching a database.

Our present work has several conceptual similarities
with profile methods, particularly in regard to seeking
meaningful or prototypical amino acid distributions for
use in database search and multiple alignment (Water-
man and Perlwitz, 1986; Barton and Sternberg, 1990;
Gribskov el al., 1990; Bowie el al., 1991; Lfithy et al.,
1991). In particular, Liithy, McLachlan and Eisen-
berg (1991) have analyzed multiple alignments using
secondary structure information to construct a set of
distributions describing the columnar statistics of sec-
oudary protein structures. The result of their work is a
set of nine probability distributions, which we will call
the LME distributions, describing the distribution of
amino acids in nine different structural environments in
a protein. 1 These LME distributions have been shown
to increase the accuracy of profiles in both database
search and multiple alignment by enabling them to
take advantage of prior knowledge of secondary struc-
ture.

There are two difficulties in applying the LME dis-
tributions to HMMs. First, there is no measure of
how much variance is associated with each of the dis-
tributions. This is important because Bayes rule de-
mands that in computing the posterior, the observed
frequency counts be modified less strongly when the
prior distribution has a very high variance. Second,
the LME distributions are directly associated with sec-
ondary structure, whereas we assume no secondary
structure information is available.

Instead of beginning with secondary structure, our
approach is to use unlabeled training sequences to dis-
cover, through clustering, those classes of distributions
of amino acids that are intrinsic to the data. We do
this with statistical methods that directly estimate the
most likely Dirichlet mixture density from observed
counts of amino acids. In several cases, the amino acid
distributions we find are easily identified as typifying
some commonly found distribution (e.g., a large non-
polar), but we do not set out a priori to find distribu-

1In more recent work, they have used 18 different dis-
tributions (Bowie et al., 1991).
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tions representing these structures.
For a review of the essentials of the HMM methodol-

ogy we use, including architecture, parameter estima-
tion, multiple alignments, and database searches, see
(Krogh et al., 1992).

Modeling amino acid distributions with
Dirichlet mixtures

Examining the columns in a large multiple alignment of
a homologous set of protein sequences, we see a variety
of distributions of amino acids. In the extreme case,
when an anaino acid is highly conserved at a certain
position in the protein family, such as the proximal
histidine that coordinates the heme iron in hemoglobin,
the distribution of amino acids in the corresponding
column of the multiple alignment is sharply peaked
on that one amino acid, whereas in other cases the
distribution is spread over many possible amino acids.

There are many different commonly occurring dis~
tributions. Some of these reflect preference for hy-
drophobic amino acids, some for small amino acids,
and some for more complex combinations of physico-
chemical features. Using a purely statistical method,
we have attempted to discover and model the major
types of amino acid distributions found in columns of
multiple alignments. Our principle intent was to use
this iuformation to produce better multiple alignments,
but the results may also be of independent biological
interest.

Our primary data is a set of N count vectors. Each
count vector in this set represents data from a spe-
cific column in a specific multiple alignment. Many
multiple alignments of different protein families are in-
cluded, so N is typically in the thousands. Let us
suppose that we fix a numbering of the amino acids
from I to 20. Then, each count vector has the form
ff -- (ni .... , n20), where ni is the number of times the
i th amino acids occurs in the column represented by
this count vector. We make the simplifying assump-
tion that the amino acids in a particular column are
geuerated independently at random according to an
underlying probability distribution fi = (Pl ..... P20)
over the 20 anaino acids. Each column, however, is as-
sumed to have its own unique probability distribution.
Our goal is to model the kinds of distributions/7 that
are most likely generating the actual observed count
vectors.

A trivial approach would be to estimate a probabil-
ity distribution /Y separately for each count vector or
column. Under our independence assumption, a single
couut vector ~ is interpreted as data from a multino-
mia] distribution with unknown parameters ]. We can
estimate the Pi parameters from this data using the
usual lnaximum likelihood method, i.e. by finding the
pi’s that maximize

Proh(n~ .... , n~olp~ , . . . , p2o).
As is well known, this leads to the obvious estimate



2OPi "- nl/n, where n - ~i=I nl. These i6i values are just
a summary of the raw data, and for small n provide
only poor estimates for the actual underlying proba-
bility distributions.

To solve this problem, we propose a two-stage
stochastic model for the data. We assume that, for
each count vector if, first a distribution ff is chosen
independently from an unknown probability density p
over all such distributions, then the count vector
is generated according to the multinomial distribution
with parameters ft. Our goal is now to bypass the
estimation of the individual 17 parameter vectors and
instead use the data from the count vectors to directly
estimate the underlying density p.

To make this feasible, we have assumed a simple
parametric form for the density p, initially choos-
ing a Dirichlet density with unknown parameters
al,...,a~0 (Berger, 19851 Santner and Duffy, 1989).
The value of p at a particular point 17 is given by:

lr-lr 20 <~,--1
p(p-.) ll i=l Pi (1)

Z ’

where Z is the normalizing constant such that p inte-
grates to unity. Letting a = ~"~=1 a’i, it is easy to see
that the Dirichlet density with parameters cq,..., o~20
is peaked around the amino acid distribution where
Pi = Oti/ot. The larger c~ is, the more peaked is the den-
sity. Thus, modeling p by a simple Dirichlet density as-
sumes that all amino acid distributions are deviations
from one central underlying anaino acid distribution.

Because this latter assumption seems dubious, in
further experinaents we have used a more complex form
for the density p. In particular, we assume that p has
the form

p = qlPi + ... + qkP~, (2)
where each Pi is a Dirichlet density and the numbers
ql,.-.,qk are positive and sum to one. A density of
this form is called a mixture density (or, in this spe-
cific case, a Dirichlet mixture density), and the qj val-
ues are called mixture coefficients. Each of the densi-
ties pj is called a component of the mixture. By us-
ing a Dirichlet mixture, we hope to discover several
underlying "prototypical" amino acid distributions: a
collection of amino acid distributions such that each
observed column count from a multiple alignment is
very likely obtained from a minor variant of one of the
prototypes. The process is similar to clustering amino
acid distributions into types. However, instead of hav-
ing just 20 parameters cq,..., a.~0 to estimate, as in tim
case of a single Dirichlet density, we now have 21 x k
parameters to estimate: twenty oq values for each of
the k components of the mixture and twenty mixture
coefficients. This is feasible if k small and the number
of count vectors available is large.

We have used the maximum likelihood method to
estimate the parameters of p from the set of count vec-
tors. Thus, we searched for the parameters of p that
would maximize the probability of occurence of the

observed count vectors. In the simplest case, we have
simply fixed the number of components k to a partic-
ular value and then estimated the 21 x k parameters.
In other experiments, we tried to estimate k as well.
Unfortunately, even for fixed k, there does not appear
to be an efficient method of estimating these param-
eters that is guaranteed to always find the maximum
likelihood estimate. However, the standard estimation-
maximization (EM) algorithm for mixture density es-
timation works well in practice.2

The final result of this statistical estimation is a
set of k mixture coefficients, ql,...,qk, and a set of
k Dirichlet parameter vectors, ~l,...,~k, where ~j is

the vector a~j),. .., a~#0) of parameters of the flh Dirich-
let component in the mixture. These parameters are
possibly interesting in themselves, in terms of what
they reveal about protein structure (as discussed in
the next section), however their main use will be in
improving multiple alignments and other models de-
rived from multiple alignments, such as profiles and
HMMs.

Consider the production of a multiple alignment for
a protein family. From one column in a rough, initial
alignment, a count vector ~ is obtained. One imme-
diate question to consider is whether or not the count
vector is similar to one of the distributions on amino
acids tlmt commonly occurs in protein families. If this
is the case, then this can be considered evidence for
the accuracy of the alignment (otherwise, it may be
considered evidence against that particular alignment).
Furthermore, assuming a correspondence, one may ask
what structural role is usually played by positions that
have this kind of distribution and use this information
to discover the common structure of the proteins fam-
ily. Finally, if only a relatively small number of pro-
teins make up the alignment (less than 30), then one
does not expect the counts ~ to yield good estimates of
the actual probabilities/7 that each amino acid will ap-
pear in that position in other proteins from the family
not yet included in the alignment. Thus, it is difficult
to use this alignment to search a database for other
proteins in the family, by profile, HMM, or alternative
methods. By combining these counts with prior infor-
mation from the Dirichlet densities, better estimates
of the pl parameters can be obtained. In this sense
the Dirichlet mixture prior provides an alternative to
the use of the Dayhoff matrix (Dayhoff el al., 1978),
and other means of "smoothing" probability estimates
based on a few occurrences of amino acids.

Once we have estimated the parameters of a Dirich-
let mixture, these issues can all be addressed in a
purely statistical manner. We do this by treating the

2An introduction to this method of mixture density es-
timation is given in the book by Duda and Hart (1973).
We have modified their procedure to estimate a mixture
of Dirichlet rather than Gaussian densities. The mathe-
matical details of this will be described in a separate paper
(Brown et al., 1993).
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Dirichlet mixture density p as a prior probability den-
sity over the possible actual distributions/Y in the new
protein family being modeled. Then, given the ac-
tual counts ff for a particular column of a multiple
alignment, we can use a Bayesian method to deter-
mine tile type of distribution that may have generated
these counts, (i.e., which of the k compouents of the
Diriclflet mixture may have produced the underlying
probability distribution/Yfor this position) and to pro-
duce estimates/~1 ..... /~20 of the actual Pi values. The
latter estimates will differ from the maximum likeli-
hood estimates, and should be much better when n is
small.

It is straightforward to derive the formulas for these
Bayes estinaates, assuming a Dirichlet mixture prior
(Brown et al., 1993). In the first case, for each j be-
tween 1 and k, we want to calculate Prob(jla ), the
posterior probability that the uuderlying probability
distribution /Y that produced the observed counts
was chosen from the jth component of the Dirichlet
mixture. Hence, instead of identifying one single com-
ponent of the mixture that accounts for the observed
data, we determine how likely each individual compo-
nent is to have produced the data. Using Bayes rule,

qj Prob(fflpj 
(3)Pr°b(JlrT) = E~=I qtPr°b(fflPt)"

~0 =
(j)And, if n = E;=I ni and a’J) E~O10~i ,

r(n + 1)r(~(~)) ~-~ r(m + a(/))
Prob(~[pj)

F(n. + a’(’/I)/’]’~1 F(ni 1)F(allJ))’

where F(x) is the gamma fnnctio,~. Ilence this gives
an explicit formula for the first kind of estimate.

For the second kind of estimate, the estimate of the
pi parameters from the counts rli, again using Bayes
rules,

k Prob(j[ff)alj)
ni + )-’~4=1

Pi = , (4)
Z

where Z is the appropriate normalizing constant so
20 .-

that ~=t Pi = 1.
We propose this method as a new way of interpreting

count data from multiple alignments. In particular, we
suggest that a comprehensive Dirichlet mixture density
be constructed that covers most of the anfino acid dis-
tributions that have been found in existing nmltiple
alignments. Then, when new multiple alignments are
constructed, we suggest that the statistics from each
column be used to classify that column based on the
posterior probabilities of the components of the Dirich-
let mixture, using Equation 3, and that the underlying
probabilities of the 20 amino acids for that column be
estimated using Equation 4. In the following section
we describe the experiments we have done using this
method.

3This is actually the mean posterior estimate of the pa-
rameters/~.

50 ISMB-93

Sequences Columns in Alignment Protein Family
400 147 Globins
193 254 Kinases
88 401 Elongation

Figure 2: Protein families included in the HMM data
set.

Results

Obtaining Priors

As described above, our approach focuses on an auto-
mated construction of priors based on multiple align-
meats. Here we describe the construction of several
Dirichlet mixture priors and demonstrate the effective-
ness of these priors in building accurate models for the
EF-hand motif.

We used two sources of multiple alignments for our
raw count data: alignments from the HSSP database
(Sander and Schneider, 1991) (Figure 1), and multiple
alignments we generated using HMMs to model the ki-
nasa, globin and elongation factor families (Haussler
el al., 1993; Krogh et al., 1992) (Figure 2). The 
tal number of columns from the HSSP alignments was
5670; the number of columns from the HMM align-
mcnts totaled 802.

The HSSP database contains multiple alignments
of proteins obtained by taking a single protein whose
three dimensional structure is known, and aligning to
it. other proteins that are deemed homologous above
a certain threshold to this protein but whose struc-
ture is not known. In (Sander and Schneider, 1991), 
representative set of HSSP multiple alignments is sug-
gested that includes a variety of different protein types.
We used all the multiple alignments in this representa-
tive set with 30 or more sequences to obtain our HSSP
count data. These proteins are listed in Figure 1.

Sequences used to create HMM alignments were ob-
tained from various sources. The training data we used
to create our kinase alignment came from the March
1992 release of the protein kinase catalytic domain
database maintained by S. K. Hanks and A. M. Quinn
(1991). This set is biased towards sequences from
vertebrates and higher eucaryotes but includes some
from lower eucaryotes. There are only two kinases en-
coded by viral genomes. Training data for the globin
alignment consisted of all $1obins from the SWISS-
PROT database, release 22 (Barioch and Boeckmann,
1991). Elongation factor sequences were drawn from
the SWISS-PROT database, releases 22 and 23. Mul-
tiple alignments for these sequences were produced
by HMMs we built for these families, as described in
(Krogh et al., 1992; Hughey, 1993). Summary infor-
mation for these data sets is given in Figure 2.

Using the maximum likelihood procedure described
in the previous section, we estimated the parameters
of both a one component Dirichlet mixture density and



J Sequences
948
475
372
287
251
242
191
178
130
126
I09
107
102
89
89
89
82
81
77

71
65
63
63
6O
59
54
53
49
46
46

41
39
38
38
36
35

.33
31

31
30
30

HSSP identifier
1HDS
IFDL
2FBJ
2PKA
7ADH
ITRC
2TGP
ITGS
3HLA
2RUS
3CYT
4INS
5P2P
1R08
2RRI
2RS3
3SGB
ICDT
2MEV
1NXB
2LTN
IGDI
IWSY
IFC2
1FC1
IETU
8RSA
5HVP
4LYZ
9API
2CD4
IGCR
2SBT
2SOD
ICSE

9WGA
31CB
1CMS
5LDH
1MHU
2MRT

Protein F,mily
HEMOGLOBIN

IG=GI FAB FRAGMENT
IG"A FAB FRAGMENT

KALLIKREIN A
ISONICOTINIMIDYLATED LIVER ALCOHOL DEHYDROGENASE

CALMODULIN
TRYPSINOGEN COMPLEX WITH PANCREATIC TRYPSIN INHIBITOR

TRYPSINOGEN COMPLEX WITH PORCINE PANCREATIC SECRETORY
HUMAN CLASS I HISTOCOMPATIBILITY ANTIGEN A2.1

RUBISCO
CYTOCHROME $C

INSULIN
PHOSPHOLIPASE A=2

RHINOVIRUS 14
RHINOVIRUS 14
RHINOVIRUS 14

PROTEINASE B FROM STREPTOMYCES GRISEUS
CARDIOTOXIN V=4===/II$==

MENGO ENCEPHALOMYOCARDITIS VIRUS COAT PROTEIN
NEUROTOXIN $B

PEA LECTIN
HOLO-=D-*GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE

TRYPTOPHAN SYNTHASE
IMMUNOGLOBULIN FC AND FRAGMENT B OF PROTEIN A COMPLEX

FC1 FC FRAGMENT
ELONGATION FACTOR TU

RIBONUCLEASE *A
HIV$-I PROTEASE COMPLEX WITH ACETYL-PEPSTATIN

LYSOZYME
MODIFIED ALPHA=I =-*ANTITRYPSIN

CD45
GAMMA-/n$ CRYSTALLIN

SUBTILISIN NOVO
CU,ZN SUPEROXIDE DISMUTASE

SUBTILISIN CARLSBERG
WHEAT GERM AGGLUTININ
CALCIUM-BINDING PROTEIN

CHYMOSIN B
LACTATE DEHYDROGENASE H=4= AND S-$LAC./NAD$=m+== COMPLEX

CD.7 METALLOTHIONEIN-2
CD.7 METALLOTHIONEIN-2

Figure 1: Protein families iucluded in the HSSP data set.

a nine component Dirichlet mixture density from the
5670 count vectors obtained from the I’ISSP multiple
alignments. We call these Dirichlet mixtures HSSP1
and HSSP9, respectively. As Blentioned in the previ-
ous section, the EM method we use is not guaranteed
to always find the optimal setting of the parameters.
However, nmltiple runs of the program with different
initial parameter settings, yielded virtually identical
priors, indicating that these solutions are very stable.
In addition, we conducted all experiment to find a prior
with a larger number of components. For this experi-
ment, we started with 100 components using random
initial values for the DiricMet parameters. After elim-
inating those components found to not represent any
of the data, we obtained a mixture prior having 62
components, which we call HSSP62.

Similar experiments were done for the HMM align-
ments, obtaining Dirichlet mixture priors with one
component, nine components, and 33 components
(tIMM1, HMM9, HMM33). The results for the single-
component and nine-component priors were also shown
to be stable with respect to the initial starting point
of the estimation procedure.

We studied the priors we obtained from the IIMM
alignments and the HSSP alignments and found sev-
eral components cominon to both sets. Similarity be-
tween components was determined by Kullback-Leibler

distance and by examination of the physieo-chemical
attributes of the distributions. The a parameters of
the HMM1 and HMM9 priors are given in Figure 3.
The distributions and physico-chemical attributes of
the components of these priors are summarized in Fig-
ures 4 and 5.

In general, the physico-chemical attributes of the
components of the HMM9 prior are consistent with
biological intuition. When we order the components
with respect to their mixture coefficients (i.e., their
probabilities), the first component, HMM9.1, con-
tains mostly small residues. The second component,
HMM9.2, is large, charged and polar. HMM9.3 is po-
lar, and has mostly negatively charged residues, ex-
cept for Aianine (A), which is small, neutral, and can
be found in virtually every environment. HMM9.4
has a weak tendency towards hydrophobic residues
and contains three large non-polar residues, Isoleucine
(I), Leucine (L), and Valine (V) with high probabil-
ity. However, it also contains a single charged residue,
Lysine (K) with high probability, but it is worth not-
ing that Lysine possesses a long hydrophobic carbon
chain in addition to the positively charged nitrogen
atom. HMM9.5 is strongly hydrophobic and contains
uncharged, nonpolar amino acids. HMM9.6 is charged,
hydrophilic and polar, and HMM9.7 is negatively
charged and aromatic. HMM9.8 is strongly hydropho-
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J’[]dM 1 a.,,,4.n

H2~ g.l 0-3.0 lUd]/8.2 ~-5.4 Hfd]d 0.$ a-g,?

ItM~i 11.5 a-?,~LDdid 0.4 ,a-14,1 H~ g.6 ,a=2g.~,

FLMM 9,8 1-11.OI~lM g.7 a-0.86 HLrw a.g a-8.6

HMM g.1

HMM ~4

HMM g.7

I-IMM g.2
HMM g.3

HMM O.S

HMM g.8
HMIVl 9,g

Figure 3: a parameters for the HMM1 and tlMM9
priors. These bar charts show the 20 t~i parameters of
tile Dirichlet density of HMM1 and of each of the nine
components of HMM9. The ordering of the residues
used is that proposed by Taylor (1986). Starting from
the left, the amino acids form four groups: small and
polar, large and polar, large and non-polar, and small
and non-polar. Each bar chart is scaled by the largest
ai. The parameter a is the sum of the ai, which gives
some idea of the real magnitude of the parameters.

bic, non-polar and uncharged. HMM9.9 greatly em-
phasizes large residues aswell as aromatic, hydrophobic
and uncharged residues.

In addition to the priors we obtained via maxi-
mum likelihood estimation, we tested the effective-
hess of some additional priors: the standard uniform
prior called Add One, 4 priors obtained directly fi’om
the nine-component LME distributions (Liithy et al.,
1991) and a 29-component EF-hand custom prior in
which each component is derived from a column in our
EF-hand multiple alignment. The prior derived from
the nine-component LME distributions was obtained
by forming Dirichlet mixture components for each of
the nine LME amino acid distributions with the same
means and a fixed variance. 5 The 29-component EF-

4This prior is often used to avoid zero probabilities on
distributions in states of HMMs. Posterior estimates for
this prior are obtained by simply adding one to all ob-
served frequency counts and then normalizing so that the
parameters sum to one.

5The variance was set so that the sum of the ~i p~tralu-
eters was 10. This appeared to work best for our experi-
ments with EF-hand sequences, but further experimenta-
tion would be required to find the optimal value.

Figure 4: Log ratios for the distributions represented
by the ItMM1 and HMM9 priors. The i th bar in the
graph for HMM9.j shows the logarithm of the ratio
pi/qi where Pi is the probability of the i th amino acid
in the mean of the jch component of the HMM9 prior.
The variable, qi, is the probability of the i th amino
acid in the overall mean of HMM1. These values rep-
resent the difference in mean amino acid distribution
of the jth component from the background distribu-
tion. Positive numbers indicate higher values than the
background distribution; negative numbers represent
lower values than the background.

hand custom prior was designed specifically as a kind
of control for the EF-hand motif experiments reported
in the next section. Each component of this mixture
is a Dirichlet distribution that is strongly peaked on
the particular amino acid distribution at one of the
positions in a multiple alignment of 885 EF-hand mo-
tifs. We use it as a control in our EF-hand experi-
ments to indicate what kind of performance we might
expect if we used the best possible prior for obtaining
HMMs and multiple alignments of EF-hand sequences.
Of course this particular prior will be useless for other
kinds of proteins.

Using Priors to Build HMMs

We cohducted a series of experiments on building
HMMs for the EF-hand motif. EF-hands are an ap-
proximately 29-residue structure present in cytosolic
calcium-modulated proteins (Nakayama et al., 1992;
Persechini et al., 1989; Moncrief et al., 1990). These
proteins bind the second messenger calcium (Ca2+)

and in their active form function as enzymes or reg-
ulate other enzymes and structural proteins. The EF-
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1 2 3 4 S e 7 8 8

|
I -- ....I

1 2 3 4 5 6 7 8 9

[______. |
Md~lw W~ghl

POS~v~dy Charged Negatively Charged

Figure 5: Physico-chemical characteristics of compo-
nents of the HMM9 prior. IIere each bar chart shows
the relative scores of one characteristic for all nine com-
ponents of IIMM9. A positive score indicates that tile
distribution represented by the component puts more
weight on residues with that characteristic than does
the background distribution (represented by HMM1).
A negative score indicates that less weight is put on
residues with this characteristic. Each characteristic
is defined by a numerical value for all residues, then
these are averaged with respect to the distribution,
and finally the background average is subtracted. Def-
initions of the numerical scores are taken from (Fas-
man, 1989) (Hydrophobicity, Standard-state accessi-
bility, Average accessible area), (tIunter, 1987) (Molec-
ular Weight), and (King and Sternberg, 1990) (Polar,
Charged, Positively and Negatively Charged).

hand motif consists of an a-helix, a loop binding a
Ca2+ ion and a second helix. We chose EF-hands to
demonstrate the ability of mixture-priors to compen-
sate for limited sample sizes because the motif’s small
size allowed many experiments to be performed rela-
tively rapidly. Furthermore, a large nmnber of EF-
hand motif sequences are available.

For these experiments we used the June 1992
database of EF-hand sequences maintained by
Kretsinger and co-workers (Nakayama et al., 1992).
Sequences in this database are proteins containing two
or more copies of the EF-hand motif. We extracted the
EF-hand structures from each of the 242 sequences in
the database, obtaining 885 EF-hand motifs having an
average length of 29. Training sets were constructed
by randomly extracting subsets of size 5, 10, 20, 40,
60, 80, and 100.

i
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Figure 6: Average NLL scores on test data for IIMMs
built using different combinations of training set sizes
and priors estimated from the HMM data. Bars in-
dicate one standard deviation above and below the
mean. For sample sizes 5, 10, and 20 we did 15 rep-
etitions with independently chosen training sets. For
other sample sizes we performed five repetitions.

For each training set size and each prior, several
ttMMs were built. We evaluated each HMM on a
separate test set containing EF-hand sequences not in
the training set, yielding an average negative log likeli-
hood (N£L) score over all test sequences for each model
(Krogh et ai., 1992). Lower scores represent more accu-
rate models. For every combination of training sample
size and prior used, we took the average test-set NLL-
score across all models, and the standard deviation of
the test-set NLL-scores. The results for the Add One,
HMM1, IIMM9, and EF-hand custom priors are shown
in Figure 6. The results of tests using priors derived
from the HSSP alignments are shown in Figure 7.

From these Figures, we see that Add One and ttSSP1
perform the worst, followed by HMM1, tISSPg, HMM9
and EF-hand custom prior. IISSP62 and IIMM33, not
shown, both perform about the same as HMMg, which
was close in performance to ttSSP9. We conducted
tests using the nine LME distributions on sample size
of 10. While these are not shown, the results were at
the midpoint between the performance of IIMM1 and
HMM9. Further tests on the nine LME and the 18
LME distributions are in progress.

In our previous work, the NLL score has always
been aimost perfectly correlated with superior multiple
alignments and database search. To further demon-
strate the latter point, we tested some of the ttMMs
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Figure 7: Average NLL scores on test data for HMMs
built using different combinations of training set sizes
and priors estimated from the HSSP data. Bars indi-
cate one standard deviation. For sample size 20 we did
15 repetitions with independently chosen training sets.
For other sample sizes we performed five repetitions.

built from various priors on timir ability to discrimi-
nate sequences containing the EF-hand domain from
those not containing the domain. To do this we choose
models built from training samples of sizes 5, 10, and
20, and using the Add one, ItMM1, HMM9 and EF-
hand custom priors. For each sample size and prior, we
built an HMM as above and then used it to search the
SWISS-PROT database for sequences that contain the
EF-hand motif, using the method described in (Krogh
e~ al., 1992). The results are given in Figure 8.

The results show again that HMM9 performs bet-
ter than HMM1, which performs better than Add one.
Unfortunately, only one test was done for each eolnbi-
nation of sample size and prior, so the results are not
as statistically clear as those for NLL-score.

Finally, we note that while the ItSSP alignments
contain EF-hand-specific proteins, the HMM align-
ments do not. Interestingly, results of experiments
show that the tIMM-derived priors perform better.
This confirms that these priors do indeed capture some
universal aspect of amino acid distributions that are
meaningful across different protein families.

Conclusions
The use of Dirichlet mixture priors has been shown
to increase the accuracy of HMMs for protein families
where only a small number of sequences are available.
In particular, the ability of models trained using prior

Figure 8: Discrimination results for models trained
with training set sizes of 5, 10, and 20 sequences and
priors. The percentage of EF-hand sequences that are
found through a database search is reported for mod-
els trained with different training set sizes and priors.
The cutoff is set so that there are no false positive
classifications.

information to discriminate members of protein fam-
ilies from non-members is enhanced. Thus, database
search using these models can potentially yield previ-
ously unknown members of the family, enlarging the
training set. From this new set, an even better model
can be obtained, enabling the iterative refinement of
the HMM in a bootstrapping fashion.

As experiments on the EF-hand domain using cus-
tom priors demonstrate, if one has a library of Dirich-
let priors spanning a variety of amino acid distribu-
tions, such that virtually all possible distributions are
represented, even extremely small training sets can in
principle yield final models that are close to optimal.
Ideally, such a library would be continually updated
as new models and alignments are produced. We plan
to do this as we continue to build I:IMMs for protein
families.
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